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INTRODUCTION 
  Coating/substrate system and functionally graded materials (FGMs) are increasingly used in a wide range of 

applications to improve the performanc e of critical components. For such materials, the material properties vary 
along the depth direction. Used as coatings or interfacial zones, multilayered materials and FGMs can reduce the 
magnitude of residual and thermal stresses, mitigate stress concentration and increase fracture toughness [1]. A 

series of researches have been devoted to the simulation and investigation of heat conduction in multilayered 
materials. It should be pointed out that most studies have limits in either dimensions or computational efficiency; 
and the number of layers is also quite limited. It  is of the great convenience for applications to develop explicit 

expressions of the frequency response functions (FRFs) to avoid the tedious numerical procedures  [2]. Through 
the method of FRFs, the stress and displacement fields in multilayered materials have been obtained. In present  
paper, the closed-form FRFs for steady-state temperature field in multilayered materials are derived. It is in a 

recursive form, instead of numerically solving a set of equations; and there is no limit in layer number and 
thickness. Based on the FRFs and semi-analytical method (SAM), the solution under arbitrary heat input can be 
obtained. 

2 Theoretical derivation 

2.1 Temperature rise field in frequency domain 
A half-space with L coatings is illustrated in Fig. 1, where the coatings are indicated by j=1, ..., L, and the 

half-space is labeled by L+1. 
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Fig. 1 Schematic of a multilayered material under unit heat input.  

The partial differential equation governing heat conduction is given as follows for each layer j in its simplest form by  
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As it is convenient to access the solutions of heat conduction problem for layered material in the frequency domain, 
here double Fourier transform (FT) is applied: 

2 ( )
2 ( )

2
i

j
j

x

j j

T V
T

z

 
     

 


       (2) 

where ‘~’ stands for the double FT operation and 2 2

x y   
 with the frequency variables 

x  and 
y  corresponding to 

the x and y directions respectively. This is a second order linear constant coefficient differential equation with respect to z, 

and its general solution can be expressed in terms of exponential functions with two unknown coefficients. The general 
solution can be written as follows 
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For the substrate (half-space), the temperature rise should be a finite-value; thus N(L+1) should be equal to zero and 
the corresponding equation in substrate is: 
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It can be seen that the total number of unknown coefficients is also 2L+1. 

2.2 Recursive solution of the matrix equations 

Substituting the temperature rise expression Eqs.(3)-(4) into the transformed boundary conditions, a linear system  
2L+1 equations for solving 2L+1 unknown coefficients can be constructed.  By applying double FT, the boundary 
conditions in frequency domain can be obtained, and can be rewritten in form of matrix equations as follows 
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For L layered half-space, each interface leads to two more equations for continuity of boundary conditions, which 
should be orderly added in the matrix equation. Then the recursive method can be applied to solve this equation. Here the 

bottom-up fashion is used and it starts from the interface L. Firstly, based on the last two equations in Eq.(5), the relation 
of ( )LM  and ( )LN  is obtained as 
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At interface j+1 is assumed to also follow the form, then combined with the sub-matrix, the relationship of 
( )jM and 

( )jN  

can be obtained, as shown in Eq. (7). From Eq. (7) the relationship of ( )j+1M and ( )j+1N  can be obtained and they are also in 

the form of Eq.(6), which is proven to hold for every layer. Then the coefficients of the first layer can be solved through 

Eq.(8), and all the coefficients can be obtained with a top-bottom fashion. 
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3 Numerical results and discussions 
Firstly the model is verified through the comparison with FEM for the case of four-coatings on a half-space (L=4, κj=1, 

0.2, 1, 0.2, 1, j=1,…,5) under rectangular unit heat source, as shown in Fig.2. Through the comparison the present 
method shows high accuracy and efficiency. 

Then the exponentially varying thermal conductivity  

coefficient in FGM is studied as shown in Eq.(9).  

 1 1 1( ) , ln / /z

L cz e h       (9) 

The case that the heat source moves along x-axis is 
studied and the Péclet number is adopted as Pe=V*l/γ, 
the thermal diffusivity γ in all the layers are treated as 

same to unit. Then different Pe and κ1 are applied and 
the result are shown in Fig.3. Firstly, for Pe=0.5 (the first  
column of Fig.3) the heat diffuses farther obviously as 

the speed is low and there is sufficient time to heat 
diffusion, and the maximum temperature rise decreases 
a lot when κ1=2 compared that from κ1=0.5. Then by 

comparing the two plots in the first or second row, it can 
also be found that with increase of Pe, the maximum 
temperature rise decreases for certain κ1 since that the 

fresh material passes through the heated zone fast and 
the accumulative effect of heat is weakened. 

4 Conclusion 

Analytic FRFs for steady -state three-dimensional 
temperature rise solution of materials with arbitrary  

layers of coatings are explicitly derived for the first time. 
Based on the obtained FRFs of temperature rise, a 
semi-analytical method (SAM) is developed, which can 

be used to solve the temperature distribution in 
multilayered material under arbitrary distributed heat  
source. The temperature rise of materials with various 

number and properties of layers are solved and 
compared with FEM, which show excellent agreements. 
The temperature solution in multilayered material with 
exponentially varying thermal conductivity of layers  

along the thickness is studied. The multilayered 
materials with low conduction capacity present high 
temperature rise. 
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Fig. 2 Contour plots of temperature rise on y=0 plane from FEM 

and the present method. 

Fig. 3 Temperature rise on y=0 plane for different thermal 
conductivities and velocities of moving heat source. 

 

6

5

4

3

2

1

0


1
=0.5, Pe=0.5

z 0.0150

0.314

0.613

0.913

1.21

1.51

1.81


1
=0.5, Pe=2

0.0100

0.261

0.512

0.763

1.01

1.26

1.52

-3 -2 -1 0 1 2 3
6

5

4

3

2

1

0


1
=2, Pe=0.5

x

z 0.0100

0.103

0.196

0.289

0.382

0.475

0.568

-3 -2 -1 0 1 2 3


1
=2, Pe=2

x

0.0100

0.0827

0.155

0.228

0.301

0.373

0.446


